skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Desautels, T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Multi-fidelity Bayesian optimization (MFBO) is a powerful approach that utilizes low-fidelity, cost-effective sources to expedite the exploration and exploitation of a high-fidelity objective function. Existing MFBO methods with theoretical foundations either lack justification for performance improvements over single-fidelity optimization or rely on strong assumptions about the relationships between fidelity sources to construct surrogate models and direct queries to low-fidelity sources. To mitigate the dependency on cross-fidelity assumptions while maintaining the advantages of low-fidelity queries, we introduce a random sampling and partition-based MFBO framework with deep kernel learning. This framework is robust to cross-fidelity model misspecification and explicitly illustrates the benefits of low-fidelity queries. Our results demonstrate that the proposed algorithm effectively manages complex cross-fidelity relationships and efficiently optimizes the target fidelity function. 
    more » « less
    Free, publicly-accessible full text available May 3, 2026